山东昊明电子商务有限公司
山特ups电源 , 维谛ups电源 , 索迪森蓄电池 , 德国阳光蓄电池
迈威MAIWEI蓄电池MW200-12/12V200AH参数及型号

迈威蓄电池迈威铅酸电池公司 迈威蓄电池应用领域
控制体系、电动玩具、应急灯、电动工具、应急器械、警示体系、应急灯照明、备用电力电源、UPS及EPS机备用电源、电力体系、电信设备、消防和安全防卫体系、铁路体系、发电站、船只设备、备用设备及电话交换机。

迈威蓄电池类型    电压V   容量(Ah)    外形尺寸(mm)

长 mm   宽 mm   总高 mm

MW7-12    12V   7Ah    151    65    97.5

MW12-12    12V   12Ah    151    98    100

MW17-12    12V   17Ah    181    76    167

MW24-12    12V   24Ah    165    125    175

MW38-12    12V   38Ah    197    165    170

MW65-12    12V   65Ah    350    166    174

MW100-12    12V   100Ah    407    173    240

MW120-12    12V   120Ah    407    173    242

MW150-12    12V   150Ah    484    170    242

MW200-12    12V   200Ah    520    240    245


 迈威蓄电池迈威铅酸电池公司 迈威蓄电池运用装置养护计划:

电池不宜放电至低于预定的停止电压,不然将致使过放电,而重复的过放电则会致使容量难以康复,为到达佳的作业效率,放电应0.05-2C 之间,放电停止电压如上表1所示。
2) 放电后请敏捷充电,特别是在深放电后更应当即充电,不然将也许致使电池容量无法康复。
3) 放电时请将电池温度控制在-15~50℃。电池不宜放电至低于预定的停止电压,不然将致使过放电,而重复的过放电则会致使容量难以康复,为到达佳的作业效率,放电应0.05-2C 之间,放电停止电压如上表1所示。
2) 放电后请敏捷充电,特别是在深放电后更应当即充电,不然将也许致使电池容量无法康复。
3) 放电时请将电池温度控制在-15~50℃。

迈威蓄电池容量坚持
以下要素将影响电池的运用寿数:
(1) 重复的深放电,尤其是重复的浅充电后的深放电
(2) 运用环境温度过高德国阳光蓄电池
(3) 过充电,特别是涓涓浮充充电
(4) 过大的充电电流.
(5) 充好电的电池假如长期未运用,特别是在高温环境下,将会致使自放电的加快和容量的减少。


 迈威蓄电池迈威铅酸电池公司  UPS蓄电池UPS称为不间断电源,是因为停电的时候,它能快速转换到"逆变"状态,从而不会让在使用中的电脑因为突然停电未来得及存储而失去重要文件。不是用来当备用电源用的,如果你只是想在停电的时候可以用电,光买逆变器就够了。

随着近些年来信息产业在国民经济中的地位越来越重要,我国将进一步加大在各行业特别是信息、通信、电力、金融、、制造业、交通运输、卫生、公共安全等领域的信息化建设投资。应用领域信息化建设步伐的加快,必然带动市场对UPS不间断电源更大的需求。

定义:电极主要由铅及其氧化物制成,电解液是硫酸溶液的一种蓄电池。放电状态下,正极主要成分为二氧化铅,负极主要成分为铅;充电状态下,正负极的主要成分均为硫酸铅。分为排气式蓄电池和免维护铅酸电池。


  电池主要由管式正极板、负极板、电解液、隔板、电池槽、电池盖、极柱、注液盖等组成。排气式蓄电池的电极是由铅和铅的氧化物构成,电解液是硫酸的水溶液。主要优点是电压稳定、价格便宜;缺点是比能低(即每公斤蓄电池存储的电能)、使用寿命短和日常维护频繁。老式普通蓄电池一般寿命在2年左右,而且需定期检查电解液的高度并添加蒸馏水。不过随着科技的发展,铅酸蓄电池的寿命变得更长而且维护也更简单了。


  铅酸蓄电池明显的特征是其顶部有可拧开的塑料密封盖,上面还有通气孔。这些注液盖是用来加注纯水、检查电解液和排放气体之用。按照理论上说,铅酸蓄电池需要在每次保养时检查电解液的密度和液面高度,如果有缺少需添加蒸馏水。但随着蓄电池制造技术的升级,铅酸蓄电池发展为铅酸免维护蓄电池和胶体免维护电池,铅酸蓄电池使用中无需添加电解液或蒸馏水。主要是利用正极产生氧气可在负极吸收达到氧循环,可防止水分减少。铅酸水电池大多应用在牵引车、三轮车、汽车起动等,而免维护铅酸蓄电池应用范围更广,包括不间断电源、电动车动力、电动自行车电池等。

单个蓄电池的电压与容量有限,在很多场合下要组成串连蓄电池组来使用。但非凡蓄电池组的中的电池存在均衡性的题目。如何进步蓄电池组的使用寿命,进步系统的稳定性和减少本钱,是摆在我们眼前的重要题目。 


蓄电池的使用寿命是由多方面的因素所决定,其中重要的是蓄电池本身的物理性能。


此外,电池治理技术的低下和不公道的充放电制度也是造成电池寿命缩短的重要原因。对蓄电池组来说,除往上述原因,单体电池间的不一致性也是个重要因素。针对蓄电池充放电过程中存在的单体电池不均衡的现象,笔者分析比较了目前的几种均充方法,结合实际提出了无损均充方法,并进行了试验验证。


现有的均衡充电方法


实现对串联蓄电池组的各单体电池进行均充,目前主要有以下几种方法。


1.在电池组的各单体电池上附加一个并联均衡电路,以达到分流的作用。在这种模式下,当某个电池首先达到满充时,均衡装置能阻止其过充并将多余的能量转化成热能,继续对未布满的电池充电。该方法简单,但会带来能量的损耗,不适合快充系统。


2.在充电前对每个单体逐一通过同一负载放电至同一水平,然后再进行恒流充电,以此保证各个单体之间较为正确的均衡状态。但对蓄电池组,由于个体间的物理差异,各单体深度放电后难以达到完全一致的理想效果。即使放电后达到同一效果,在充电过程中也会出现新的不均衡现象。


3.定时、定序、单独对蓄电池组中的单体蓄电池进行检测及均匀充电。在对蓄电池组进行充电时,能保证蓄电池组中的每一个蓄电池不会发生过充电或过放电的情况,因而就保证了蓄电池组中的每个蓄电池均处于正常的工作状态。


4.运用分时原理,通过开关组件的控制和切换,使额外的电流流进电压相对较低的电池中以达到均衡充电的目的。该方法效率比较高,但控制比较复杂。


5.更多蓄电池串联蓄电池与UPS电源相同的直流电压来串联,比如九华蓄电池2V系列蓄电池需要110只蓄电池相串联解决电压问题。




展开全文
拨打电话 微信咨询 发送询价